FreeBSD 6.3 running on the Armada E500

Things are working well with the combination of the new FreeBSD 6.3 and the Compaq Armada E500. The machine has a great feel to it, and despite the huge applications of today, 128M can still be used for a KDE environment.

There are a number of nice features, including a ton of connectors (10BaseT, WinModem, USB, serial, parallel, PS/2, PCMCIA). The machine just keeps going, though I have had a few (few!) lockups (normally with Amarok and something else running). With the appropriate tweaks, the KDE desktop can be as polished as any from Red Hat or Novell.

Some of the things I did:

  • Replace the shutdown picture with something else; the picture of the dragon was too smarmy.
  • Replace the background (of course!) – personalization to the max.
  • Switch to the “Macintosh” version of menu layout; it’s the most user-friendly.
  • Load KDM from ports, then activate and theme it.
  • Load a splash screen for the boot loader
  • Switch the boot loader to grub then use a splash screen to start it off.
  • Configure the special buttons to work.
  • Change the KDE menu for something easier to use (such as TastyMenu or KBFX).

When all of these are combined, the environment is very slick and professional. It still wants more than 128M though.

One pet peeve of mine I might mention with regards to menus (such as KMenu or KBFX): menus should respond instantly!! I absolutely despise hiccups and watch cursors because the menu is loading its stuff. It should just pop! into place, not thrash the hard disk. Maybe one day…

What was the best part of this? I learned a ton about themes, X keys, configuring KDM, configuring the boot loader, and using grub. And learning is the best part, right?

FreeBSD 6.3 DesktopFreeBSD 6.3 Desktop

FreeBSD 6.3 is OUT! (Armada E500 installation)

Just after installing 6.3-RC2, I discovered that 6.3 was officially released!

This didn’t take much work to update to. The basic steps were:

freebsd-update upgrade
freebsd-update install

Then – after a reboot (for kernel updates, I presume) another:

freebsd-update install

Relatively painless, throughout.

Then, continuing my install over the weekend, there were a few niggling things to fix. First off, the buttons up on the top of the keyboard didn’t work (no surprise there). Using the xev utility helps to pin down the actual keycodes for these keys, then use the xmodmap tool to add the appropriate actions to the keys. In my case, xev reported that the keys left to right were:

  • 163 (info key)
  • 142 (home key)
  • 154 (search key)
  • 143 (mail key)

These can be configured using xmodmap and a .Xmodmap file configured this way:

keycode 163 = Help
keycode 142 = XF86HomePage
keycode 154 = XF86Search
keycode 143 = XF86Mail

The values on the right (Help, XF86HomePage, XF86Search, XF86Mail) show their XFree86 heritage, but apparently do not change for These are activated by using the command:

xmodmap .Xmodmap

A good place for this line would be in the .xinitrc. However, once this is set, it is still necessary to tie applications to the shortcuts listed. In KDE, this is done in the Keyboard Shortcuts section of the Regional and Accessibility pane in Settings. In this dialog, select the “Command Shortcuts” tab, then the application you desire to use. For example, “Find Files/Folders” could be attached to the shortcut XF86Search. Once the xmodmap has been modified using the command above, then click on the Custom radio button, and click the shortcut button. Press the actual shortcut button to define the shortcut for the application.

Do this for all four buttons, and all will be well.

Then there was the problem of the mouse not being operational when waking up from a suspend. Turns out that the moused(8) daemon is the culprit. Sending a HUP signal to the daemon fixes it, but having to do this all the time is not a desirable outcome. The utility acpiconf(8) describes how it uses /etc/rc.suspend and /etc/rc.resume before and after suspending the system. I placed the command:

pkill -HUP moused

into this script, but I don’t yet know if it is truly having the desired effect or if other things are causing failures.

Another thing: the CD player would not play CDs in Amarok. Apparently, this is due to HAL and DBUS not being available. HAL depends on DBUS, so both are necessary. The following packages were needed:


I don’t know that all the dbus packages are necessary, but I decided not to chance it. Of course, dbus is part of GNOME, but whatever. Once these packages are installed, add the following to the startup configuration in /etc/rc.conf:


Next time the system boots, these daemons will start.

Also, up until this point had to be started using startx as a normal user. However, adding the login screen isn’t difficult. Edit the /etc/ttys file. In this file, there will be a line that specifies the command xdm.

Since kdm (the KDE display manager, the login screen) is actually a reworked xdm, switching one for the other is smooth and clean. Replace the xdm setting with /usr/local/bin/kdm (keeping the -nodaemon option) and set the tty to “on” (instead of “off”). Then the next time the system starts (or the ttys file is read) a login screen will activate on ttyv8 (if your file is like mine).

FreeBSD 6.3 RC-2 on a Compaq Armada E500

FreeBSD 6.2 has been on this machine for a while, but then I tried to upgrade all of the applications using the ports tree. This almost worked, except upgrading to Xorg turned out to be a massive headache and nothing worked.

It was then that FreeBSD 6.3 RC-2 was announced. I thought, why not? So off I went.

It installed well – if you don’t count my not providing enough room for /usr/local. With my “full-featured” (ha!) list of software, I wound up needing more than the original 2 Gb I originally alloted for /usr/local; with 4 Gb it worked. I also had to change the boot options, as it was still set to use 6.3-RC1 instead of 6.3-RC2. Changing the name in the options screen worked just fine.

Then after loading, I had to load the proper kernel – it couldn’t find the kernel. I selected /boot/GENERIC/kernel and all was well. At the boot loader prompt:

load /boot/GENERIC/kernel

I had to configure Xorg. This was another headache. There was an excellent article from Julien Valroff about instaling Debian GNU/Linux on this machine. Despite the difference in operating systems, the fundamentals were similar. Another fantastic resource was this old page by Frank Steiner. Despite the age, the descriptions are relevant and useful (though, again, it is about Linux). There is a page on the Gentoo Wiki that describes the machine as well, though the other pages are more descriptive.

The screen display descriptions turned out to be the easiest; the problem was the mouse. Some descriptions suggest that the synaptics driver should work. However, this never did work for me. Using the standard PS/2 mouse driver and protocol worked just fine.

I also had to up the maximum files available, though for what reason I forget. Add this line to /etc/sysctl.conf to fix this problem:


Sound was another matter. It took a bit to figure out. First off, all the Linux directions suggested using lspci to see if it was there; this is Linux-specific. The FreeBSD counterpart is pciconf. Running pciconf -lv presents this:

pcm0@pci0:8:0:   class=0x040100 card=0xb1120e11 chip=0x1978125d rev=0x10 hdr=0x00
    vendor     = 'ESS Technology'
    device     = 'ES1978 Maestro-2E Audiodrive, ES1970 Canyon3D'
    class      = multimedia
    subclass   = audio

Thus, I knew that the sound was recognized. I just had to figure out how to get things to work with it. This means kernel support, da?

First attempts to load a driver turned up short; nothing is found in /boot/modules (!). The search path had to be changed to /boot/GENERIC:

kldconfig -i /boot/GENERIC

After this, load the snd_maestro driver:

kldload snd_maestro

After this, sound will work! Amarok is great…… and sound on this machine is excellent too!

Seeing as a I was trying to load KDE on here, the next step (once Xorg is working) is to add a startkde command to the .xinitrc file (in one’s home directory).

To make the system boot properly (and so you don’t have to load kernel modules manually all the time), the /boot/loader.conf file had to be created with this:

# Directory (in /boot) containing kernel and modules
# Load maestro driver

This then worked well.

I’m enjoying this machine again – though I am attempting to make it more of a usable desktop, which means more memory and all of the niggling setup work – like bootup splash screens, configuring kdm, and more – but hey, we’re system admins here, right?